Periodograms
- periodogram estimation
DSP.Periodograms.arraysplit
— Functionarraysplit(s, n, m)
Split an array into arrays of length n
with overlapping regions of length m
. Iterating or indexing the returned AbstractVector always yields the same Vector with different contents.
DSP.Periodograms.periodogram
— Methodperiodogram(s; onesided=eltype(s)<:Real, nfft=nextfastfft(n), fs=1, window=nothing)
Computes periodogram of a signal by FFT and returns a Periodogram object.
For real signals, the two-sided periodogram is symmetric and this function returns a one-sided (real only) periodogram by default. A two-sided periodogram can be obtained by setting onesided=false
.
nfft
specifies the number of points to use for the Fourier transform. If length(s)
< nfft
, then the input is padded with zeros. By default, nfft
is the closest size for which the Fourier transform can be computed with maximal efficiency.
fs
is the sample rate of the original signal, and window
is an optional window function or vector to be applied to the original signal before computing the Fourier transform. The computed periodogram is normalized so that the area under the periodogram is equal to the uncentered variance (or average power) of the original signal.
DSP.Periodograms.welch_pgram
— Functionwelch_pgram(s, n=div(length(s), 8), noverlap=div(n, 2); onesided=eltype(s)<:Real, nfft=nextfastfft(n), fs=1, window=nothing)
Computes the Welch periodogram of a signal s
based on segments with n
samples with overlap of noverlap
samples, and returns a Periodogram object. For a Bartlett periodogram, set noverlap=0
. See periodogram
for description of optional keyword arguments.
DSP.Periodograms.spectrogram
— Functionspectrogram(s, n=div(length(s), 8), noverlap=div(n, 2); onesided=eltype(s)<:Real, nfft=nextfastfft(n), fs=1, window=nothing)
Computes the spectrogram of a signal s
based on segments with n
samples with overlap of noverlap
samples, and returns a Spectrogram object. See periodogram
for description of optional keyword arguments.
DSP.Periodograms.stft
— Functionstft(s, n=div(length(s), 8), noverlap=div(n, 2); onesided=eltype(s)<:Real, nfft=nextfastfft(n), fs=1, window=nothing)
Computes the STFT of a signal s
based on segments with n
samples with overlap of noverlap
samples, and returns a matrix containing the STFT coefficients. See periodogram
for description of optional keyword arguments.
DSP.Periodograms.periodogram
— Methodperiodogram(s::AbstractMatrix; nfft=nextfastfft(size(s)), fs=1, radialsum=false, radialavg=false)
Computes periodogram of a 2-d signal by FFT and returns a Periodogram2 object.
Returns a 2-d periodogram by default. A radially summed or averaged periodogram is returned as a Periodogram object if radialsum
or radialavg
is true, respectively.
nfft
specifies the number of points to use for the Fourier transform. If size(s)
< nfft
, then the input is padded with zeros. By default, nfft
is the closest size for which the Fourier transform can be computed with maximal efficiency. fs
is the sample rate of the original signal in both directions.
For radialsum=true
the value of power[k]
is proportional to $\frac{1}{N}\sum_{k\leq |k'|<k+1} |X[k']|^2$. For radialavg=true
it is proportional to $\frac{1}{N \#\{k\leq |k'|<k+1\}} \sum_{k\leq |k'|<k+1} |X[k']|^2$. The computation of |k'|
takes into account non-square signals by scaling the coordinates of the wavevector accordingly.
DSP.Periodograms.freq
— Functionfreq(p)
Returns the frequency bin centers for a given Periodogram
, Spectrogram
, CrossPowerSpectra
, or Coherence
object.
Returns a tuple of frequency bin centers for a given Periodogram2
object.
DSP.Periodograms.power
— Functionpower(p)
For a Periodogram
, returns the computed power at each frequency as a Vector.
For a Spectrogram
, returns the computed power at each frequency and time bin as a Matrix. Dimensions are frequency × time.
For a CrossPowerSpectra
, returns the pairwise power between each pair of channels at each frequency. Dimensions are channel x channel x frequency.
Base.Libc.time
— Functiontime(p)
Returns the time bin centers for a given Spectrogram object.
DSP.Periodograms.coherence
— Functioncoherence(c::Coherence)
Given an Coherence
object, returns an n_channels
x n_channels
x length(freq(c))
array consisting of the pairwise coherences between each channel for each frequency.
Multitaper periodogram estimation
DSP.Periodograms.mt_pgram
— Functionmt_pgram(s; onesided=eltype(s)<:Real, nfft=nextfastfft(n), fs=1, nw=4, ntapers=iceil(2nw)-1, window=dpss(length(s), nw, ntapers))
mt_pgram(signal::AbstractVector, config::MTConfig)
Computes the multitaper periodogram of a signal s
.
If window
is not specified, the signal is tapered with ntapers
discrete prolate spheroidal sequences with time-bandwidth product nw
. Each sequence is equally weighted; adaptive multitaper is not (yet) supported.
If window
is specified, each column is applied as a taper. The sum of periodograms is normalized by the total sum of squares of window
.
Returns a Periodogram
.
DSP.Periodograms.mt_pgram!
— Functionmt_pgram!(output, s::AbstractVector{T}; onesided::Bool=eltype(s)<:Real,
nfft::Int=nextfastfft(length(s)), fs::Real=1,
nw::Real=4, ntapers::Int=ceil(Int, 2nw)-1,
window::Union{AbstractMatrix,Nothing}=nothing) where T<:Number
mt_pgram!(output::AbstractVector, signal::AbstractVector, config::MTConfig) -> Periodogram
Computes a multitapered periodogram, storing the output in output
. Arguments:
signal::AbstractVector
: should be of lengthconfig.n_samples
output::AbstractVector
: should be of lengthlength(config.freq)
Optionally pass an MTConfig
object to preallocate temporary variables and choose configuration settings; otherwise, keyword arguments may be passed to choose those settings.
Returns a Periodogram
.
DSP.Periodograms.mt_spectrogram
— Functionmt_spectrogram(signal::AbstractVector{T}, n::Int=length(s) >> 3,
n_overlap::Int=n >> 1; fs=1,
onesided::Bool=T <: Real, kwargs...) where {T}
mt_spectrogram(signal::AbstractVector, config::MTSpectrogramConfig)
Compute a multitaper spectrogram, returning a Spectrogram
object. Optionally pass a MTSpectrogramConfig
object; otherwise, any additional keyword arguments accepted by MTConfig
may be passed to configure the tapering.
Returns a Spectrogram
.
See also mt_spectrogram!
.
DSP.Periodograms.mt_spectrogram!
— Functionmt_spectrogram!(output, signal::AbstractVector{T}, n::Int=length(signal) >> 3,
n_overlap::Int=n >> 1; fs=1, onesided::Bool=T <: Real, kwargs...) where {T}
mt_spectrogram!(destination::AbstractMatrix, signal::AbstractVector, config::MTSpectrogramConfig)
Computes a multitaper spectrogram using the parameters specified in config
. Arguments:
destination
:length(config.mt_config.freq)
xlength(config.time)
matrix. This can be created byDSP.allocate_output(config)
.signal
: vector of lengthconfig.n_samples
config
: optionally, pass anMTSpectrogramConfig
object to hold temporary variables and configuration settings. Otherwise, settings arguments may be passed directly.
Returns a Spectrogram
.
See also mt_spectrogram
.
DSP.Periodograms.mt_cross_power_spectra
— Functionmt_cross_power_spectra(signal::AbstractMatrix{T}; fs=1, kwargs...) where {T}
mt_cross_power_spectra(signal::AbstractMatrix, config::MTCrossSpectraConfig)
Computes multitapered cross power spectra between channels of a signal. Arguments:
signal
:n_channels
xn_samples
- Optionally pass an
MTCrossSpectraConfig
object to preallocate temporary variables
and choose configuration settings. Otherwise, any keyword arguments accepted by MTCrossSpectraConfig
may be passed here.
Produces a CrossPowerSpectra
object holding the n_channels
x n_channels
x n_frequencies
output array (accessed by power
) and the corresponding frequencies (accessed by freq
).
See also mt_cross_power_spectra!
and MTCrossSpectraConfig
.
DSP.Periodograms.mt_cross_power_spectra!
— Functionmt_cross_power_spectra!(output, signal::AbstractMatrix; fs=1, kwargs...)
mt_cross_power_spectra!(output, signal::AbstractMatrix, config::MTCrossSpectraConfig)
Computes multitapered cross power spectra between channels of a signal. Arguments:
output
:n_channels
xn_channels
xlength(config.freq)
. Can be created byDSP.allocate_output(config)
.signal
:n_channels
xn_samples
config
:MTCrossSpectraConfig{T}
: optionally pass aMTCrossSpectraConfig
to preallocate temporary and choose configuration settings. Otherwise, one may pass any keyword arguments accepted by this object.
Produces a CrossPowerSpectra
object holding the n_channels
x n_channels
x n_frequencies
output array and the corresponding frequencies (accessed by freq
).
See also mt_cross_power_spectra
and MTCrossSpectraConfig
.
DSP.Periodograms.mt_coherence
— Functionmt_coherence(signal::AbstractMatrix{T}; fs=1, freq_range = nothing, demean=false, kwargs...) where T
mt_coherence(signal::AbstractMatrix, config::MTCoherenceConfig)
Arguments:
signal
:n_channels
xn_samples
matrix- Optionally pass an
MTCoherenceConfig
to pre-allocate temporary variables and choose configuration settings, otherwise, seeMTCrossSpectraConfig
for the meaning of the keyword arguments.
Returns a Coherence
object.
See also mt_coherence
and MTCoherenceConfig
.
DSP.Periodograms.mt_coherence!
— Functionmt_coherence!(output, signal::AbstractMatrix; fs=1, freq_range=nothing, demean=false, kwargs...)
mt_coherence!(output, signal::AbstractMatrix, config::MTCoherenceConfig)
Computes the pairwise coherences between channels.
output
:n_channels
xn_channels
matrixsignal
:n_samples
xn_channels
matrixconfig
: optional configuration object that pre-allocates temporary variables and choose settings.
Returns a Coherence
object.
See also mt_coherence
and MTCoherenceConfig
.
Configuration objects
DSP.Periodograms.MTConfig
— TypeMTConfig{T}(n_samples; fs=1,
nfft = nextpow(2, n_samples),
window = nothing,
nw = 4,
ntapers = 2 * nw - 1,
taper_weights = fill(1/ntapers, ntapers),
onesided::Bool=T<:Real,
fft_flags = FFTW.MEASURE)
Creates a config object which holds the configuration state and temporary variables used in multitaper computations, e.g. mt_pgram!
, mt_spectrogram
, MTSpectrogramConfig
, MTCrossSpectraConfig
, and MTCoherenceConfig
.
An MTConfig
can be re-used between computations as long as none of the input arguments change.
n_samples
: the number of samples to be used as input when computing multitaper periodograms with this configuration. Used for pre-allocating temporary buffers.fs
: the number of samples per second of the input signalnfft
: length of input vector to the FFT; ifnfft > n_samples
, then the input signal will be zero-padded until it is of lengthnfft
.window
: window function to use for tapering. If left at the default ofnothing
,window
will be set todpss(n_samples, nw, ntapers)
.ntapers
: the number of tapers to use.taper_weights = fill(1/ntapers, ntapers)
: how to weight the contribution of each taper. The default setting is to simply average them.onesided
: whether or not to compute a "one-sided" FFT by using that real signal data yields conjugate-symmetry in Fourier space.fft_flags
: flags to control how the FFT plan is generated.
DSP.Periodograms.MTSpectrogramConfig
— TypeMTSpectrogramConfig(n_samples, mt_config::MTConfig{T}, n_overlap_samples) where {T}
MTSpectrogramConfig{T}(n_samples, samples_per_window, n_overlap_samples; fs=1, kwargs...) where {T}
Creates a MTSpectrogramConfig
which holds configuration and temporary variables for mt_spectrogram
and mt_spectrogram!
. Any keyword arguments accepted by MTConfig
may be passed here, or an MTConfig
object itself.
DSP.Periodograms.MTCrossSpectraConfig
— TypeMTCrossSpectraConfig{T}(n_channels, n_samples; fs=1, demean=false, freq_range=nothing,
ensure_aligned = T == Float32 || T == Complex{Float32}, kwargs...) where {T}
MTCrossSpectraConfig(n_channels, mt_config::MTConfig{T}; demean=false, freq_range=nothing,
ensure_aligned = T == Float32 || T == Complex{Float32})
Creates a configuration object used for mt_cross_power_spectra
and mt_cross_power_spectra!
.
n_channels
: the number of channels of the input.n_samples
: the number of samples for each channel of the input.demean
: iftrue
, the channelwise mean will be subtracted from the input signals before the cross spectral powers are computed.freq_range
: ifnothing
, all frequencies are retained. Otherwise, only frequencies betweenfirst(freq_range)
andlast(freq_range)
are retained.ensure_aligned = T == Float32 || T == Complex{Float32}
: perform an extra copy to ensure that the FFT output is memory-aligned- Additionally, either pass an
MTConfig
object, or keyword arguments such asfs
accepted byMTConfig
.
Returns a CrossPowerSpectra
object.
DSP.Periodograms.MTCoherenceConfig
— TypeMTCoherenceConfig{T}(n_channels, n_samples; fs=1, demean=false, freq_range=nothing, kwargs...) where T
MTCoherenceConfig(cs_config::MTCrossSpectraConfig{T}) where {T}
MTCoherenceConfig(n_channels, mt_config::MTConfig{T}; demean=false, freq_range=nothing,
ensure_aligned = T == Float32 || T == Complex{Float32}) where {T}
Creates a configuration object for coherences from a MTCrossSpectraConfig
. Provides a helper method with the same arugments as MTCrossSpectraConfig
to construct the MTCrossSpectraConfig
object.
See also mt_coherence
and mt_coherence!
.